

GUIDE TO APPLICATION & ROPE SELECTION

	DOCK-SIDE / DE	ECK CRANES / OFF-SH	HORE PEDESTAL	TOWER CRANES	MOBILE AND C	RAWLER CRANES	CONTAINER	CRANES / UNLOADERS	PILLING	LADLE CRANES
TYPICAL APPLICATIONS										IIII

	MAIN HOIST	BOOM HOIST	WHIP HOIST	MAIN HOIST	STAY	TROLLEY	MAIN HOIST	BOOM HOIST	MAIN HOST	BOOM HOIST	TROLLEY/ RACKING	HOIST	HOIST
HYFLEX 6/6P POWERFORM® 6/6P	X	\checkmark	×	×	~	\checkmark	x	~	\checkmark	~	~	!	\checkmark
HYFLEX 8/8P POWERFORM® 8/8P	!	\checkmark	×	×	~	~	×	~	\checkmark	~	~	×	~
HYFLEX 4	\checkmark	×	×	×	×	×	~	×	×	×	×	!	×
HYFLEX 18/18P POWERFORM® 18/18P	\checkmark	×	\checkmark	\checkmark	×	×	\checkmark	×	×	×	×	\checkmark	×
HYFLEX 35/35P POWERFORM® 35/35P	\checkmark	×	\checkmark	\checkmark	×	×	\checkmark	x	X	x	×	\checkmark	×

× Not Recommended

HYFLEX 6 / 6P

NOMINAL ROPE		40000		MINIMUM BREAKING LOAD			
DIAM	IETER	APPRO	K. MASS	1770 GRADE	1960 GRADE	2160 GRADE	
mm	inch	kg/m	lb/ft	kN	kN	kN	
8		0.273	0.184	43.3	47.9	52.8	
9		0.346	0.233	54.8	60.6	66.8	
10		0.427	0.287	67.6	74.9	82.5	
11		0.517	0.347	81.8	90.6	100	
12		0.615	0.413	97.4	108	119	
	1/2	0.689	0.463	109	121	133	
13		0.722	0.485	114	127	139	
14		0.837	0.563	133	147	162	
	⁵ / ₈	1.08	0.726	171	190	209	
16		1.10	0.739	174	192	212	
17		1.24	0.833	197	218	240	
18		1.39	0.934	220	244	269	
19		1.55	1.04	246	272	300	
20		1.72	1.16	272	301	332	
22		2.08	1.40	329	365	402	
	7/8	2.12	1.42	336	372	410	
24	¹⁵ / ₁₆	2.48	1.67	392	434	478	
25		2.69	1.81	425	471	519	
	1	2.77	1.86	438	485	535	
26		2.91	1.96	460	509	561	
28		3.37	2.26	533	591	651	
	1 ¹ / ₈	3.51	2.36	556	615	678	
30		3.87	2.60	612	678	747	
	1 ¹ / ₄	4.33	2.91	686	760	837	
32		4.40	2.96	697	771	850	
36		5.57	3.74	876	970	1069	
40		6.88	4.62	1082	1198	1320	
44		8.32	5.59	1270	1406	1549	
48	1 ⁷ / ₈	9.90	6.65	1511	1673	1844	
52		11.6	7.81	1773	1964	2164	
56		13.5	9.05	2056	2277	2510	
60	2 ³ / ₈	15.5	10.4	2361	2614	2881	

• Excellent shock resistancene

• Enhanced resistance to fleet angle if plastic impregnated

HYFLEX 8 / 8P

NOMINA	AL ROPE		Y MASS	MINIMUM BR	MINIMUM BREAKING LOAD		
DIAM	ETER	AFFRO	A. PIA33	1960 GRADE	2160 GRADE		
mm	inch	kg/m	lb/ft	kN	kN		
10		0.435	0.292	72.9	81.4		
11		0.526	0.353	86.1	96.5		
12		0.626	0.421	105	117		
	1/2	0.702	0.472	123	131		
13		0.735	0.494	124	138		
14		0.853	0.573	143	160		
15		0.979	0.658	164	183		
16	⁵ / ₈	1.11	0.746	187	208		
17		1.26	0.847	211	239		
18		1.41	0.947	239	267		
19	3/4	1.57	1.05	269	300		
20		1.76	1.18	295	331		
22		2.13	1.43	356	400		
	7/8	2.17	1.46	360	402		
24		2.53	1.70	423	475		
25		2.75	1.85	459	506		
	1	2.84	1.91	470	525		
26		2.97	2.00	500	562		
28		3.45	2.32	572	642		
	1 ¹ / ₈	3.59	2.41	596	665		
30		3.96	2.66	656	733		
32	1 ¹ / ₄	4.51	3.03	747	836		
34		5.09	3.42	843	945		
36		5.70	3.83	935	1053		
38	1 ¹ / ₂	6.35	4.27	1043	1172		
40		7.04	4.73	1162	1313		
42		7.85	5.27	1305	1462		
44		8.62	5.79	1412	1577		
	1 ³ / ₄	8.79	5.91	1441	1613		
46		9.42	6.33	1543	1731		
48		10.3	6.89	1680	1885		
50		11.1	7.48	1833	2065		
	2	11.5	7.71	1882	2101		
52		12.0	8.08	1972	2202		

• Enhanced resistance to fleet angle if plastic impregnated

• Greater surface contact area resulting from the eight strand construction

HYFLEX 35 / 35P

NOMIN				MINIMUM BREAKING LOAD			
DIAM	ETER	AFFRO	. MA33	1960 GRADE	2160 GRADE		
mm	inch	kg/m	lb/ft	kN	kN		
10		0.448	0.301	76.0	86.5		
11		0.542	0.364	91.0	104		
12		0.645	0.434	107	125		
	1/2	0.723	0.486	123	137		
13		0.757	0.509	128	146		
14		0.878	0.590	148	168		
15		1.01	0.677	170	194		
	⁵ / ₈	1.13	0.759	190	218		
16		1.15	0.771	194	221		
17		1.29	0.870	219	247		
18		1.45	0.975	242	277		
19	3/4	1.63	1.09	277	312		
20		1.79	1.20	301	337		
21		1.98	1.33	335	370		
22		2.17	1.46	370	412		
	7/8	2.21	1.49	376	418		
24		2.58	1.73	441	498		
25		2.80	1.88	479	540		
	1	2.89	1.94	491	546		

HYFLEX 35 / 35P

NOMINA	NOMINAL ROPE DIAMETER		W MACC	MINIMUM BREAKING LOAD			
DIAM	ETER	AFFIC	/A. PIA33	1960 GRADE	2160 GRADE		
mm	inch	kg/m	lb/ft	kN	kN		
26		3.03	2.04	517	581		
28		3.51	2.36	599	681		
	1 ¹ / ₈	3.66	2.46	621	704		
30		4.03	2.71	679	775		
	1 ¹ / ₄	4.52	3.03	761	786		
32		4.59	3.08	769	865		
35	1 ³ / ₈	5.47	3.67	945	1044		
36		5.81	3.90	983	1085		
38	1 ¹ / ₂	6.50	4.37	1078	1205		
40		7.17	4.82	1202	1335		
42		7.90	5.31	1227	1352		
44		8.67	5.83	1347	1484		
	1 ³ / ₄	8.85	5.95	1375	1515		
46		9.48	6.37	1472	1622		
48		10.3	6.94	1603	1766		
50		11.2	7.53	1740	1917		
	2	11.6	7.77	1796	1979		
52		12.1	8.14	1881	2072		

• Excellent non-rotational properties

• High flexibility and handling properties

• High resistance to side pressure and crushing

HYFLEX4

NOMINAL ROPE		V MACC	MINIMUM BREAKING LOAD			
DIAMETER	APPRO	A. MASS	1770 GRADE	1960 GRADE		
mm	kg/m	lb/ft	kN	kN		
16	1.09	0.731	160	177		
18	1.38	0.925	203	225		
20	1.70	1.14	250	277		
22	2.06	1.38	303	335		
24	2.45	1.64	360	399		
25	2.66	1.78	391	433		
26	2.87	1.93	423	468		
28	3.33	2.24	490	543		
30	3.83	2.57	564	624		
32	4.35	2.92	641	710		
33.5	4.77	3.20	703	778		
34	4.91	3.30	723	801		
35.5	5.36	3.60	788	873		
36	5.51	3.70	811	898		
38	6.14	4.12	904	1001		

• Torque balanced rope

HYFLEX 18

NOMIN			X MASS	MINIMUM BREAKING LOAD		
DIAM	IETER			1960 GRADE	2160 GRADE	
mm	inch	kg/m	lb/ft	kN	kN	
6		0.157	0.105	25.0	27.0	
7		0.213	0.143	34.0	37.0	
8		0.278	0.187	45.0	49.0	
9		0.352	0.237	57.0	61.0	
10		0.435	0.292	70.0	76.0	
11		0.526	0.354	84.0	91.0	
12		0.626	0.421	101	109	
	1/2	0.702	0.471	113	121	
13		0.735	0.494	118	127	
14		0.853	0.573	137	148	
15		0.979	0.658	157	169	
16	⁵ / ₈	1.11	0.748	180	194	
17		1.26	0.845	203	219	
18		1.41	0.947	226	244	
	3/4	1.58	1.06	253	273	
20		1.74	1.17	279	301	
22		2.11	1.41	339	366	
	7/8	2.15	1.44	346	374	

• Good resistance to rotation

torrests and

20 B. C.

• High flexibility and handling properties

Compacted

Lay direction

LH or RH

Lay Type

Ordinary or Langs

Finish Bright or Galvanised

POWERFORM®

POWERFORM[®] COMPACTED ROPE

Conventional Strand

Conventional Rope

Compacted Rope

manufactured using individually compacted strands. During the compaction process the outside diameter of the strand is reduced and steel moves into the empty voids between the wires within the strand. The forming process also produces a very smooth exterior strand surface.

A Powerform[®] compacted rope is

a steel wire rope which has been

Compacted Strand

Conventional

Compacted

The compacted strand has very favourable internal contact conditions when compared with the point contact of round wires within a normal strand.

Conventional

Compacted

Exterior contact conditions are equally favourable. The smooth surface of the compacted rope offers a wider bearing surface to the sheave or drum groove. Inter strand contact and contact between adjacent laps of rope on the winch drum is also improved.

POWERFORM[®] SELECTION

Optimised crane design

The breaking load to size relationship can allow crane manufacturers to optimise the design of crane components such as the winch drum and sheaves whilst still complying with international crane design standards.

Longer Life

Laboratory fatigue testing indicates that it is possible to achieve a significant increase in rope life when comparing a Powerform[®] rope with a conventional rope of equivalent construction.

Greater resistance to crushing in multi-layer coiling situations

Powerform[®] ropes are recommended for all multi-layer coiling situations where crushing on lower layers is inevitable. The more solid cross section of the Powerform[®] rope offers much greater resistance to this type of damage.

More effective resistance to crushing at crossover points

Because of the higher steel fill factor Powerform[®] ropes offer much better resistance to crushing damage at crossover points on the winch drum.

Greater resistance to "side crushing" at the drum

Abrasive wear between adjacent laps of rope which is normally most severe where the rope moves on and off the drum can be minimised by using a Powerform[®] rope.

Reduced wear on sheaves

The smooth exterior of the Powerform[®] rope can lead to reduced abrasive wear on both the sheave and rope.

POWERFORM[®] 6 / 6P

		10000	× 144.00	MINIMUM BREAKING FORCE			
DIAM	IETER	APPRO	X. MASS	1770 GRADE	1960 GRADE	2160 GRADE	
mm	inch	kg/m	lb/ft	kN	kN	kN	
26		3.11	2.09	510	564	622	
28		3.61	2.43	591	654	721	
	1 ¹ / ₈	3.76	2.53	615	681	751	
30		4,14	2.78	679	751	828	
	1 ¹ / ₄	4.54	3.05	760	841	927	
32		4.61	3.10	764	846	932	
34		5.20	3.49	860	953	1050	
35	1 ³ / ₈	5.49	3.69	910	1007	1110	
36		5.83	3.92	967	1071	1180	
38	1 ¹ / ₂	6.50	4.37	1073	1189	1310	
40		7.20	4.84	1196	1325	1460	
42		7.94	5.34	1319	1461	1610	
44		8.71	5.85	1442	1597	1760	
	1 ³ / ₄	8.89	5.97	1475	1633	1800	
46		9.52	6.40	1582	1751	1930	
48	1 ⁷ / ₈	10.4	6.99	1721	1906	2100	
50		11.3	7.59	1868	2069	2280	
	2	11.6	7.79	1926	2132	2350	
52		12.2	8.20	2016	2232	2460	
54	2 ¹ / ₈	13.1	8.80	2172	2405	2650	
56		14.1	9.47	2335	2586	2850	
58		15.1	10.1	2508	2777	3060	
60	2 ³ / ₈	16.4	11.0	2712	3004	3310	

Improved MBF

• Excellent shock resistance

- Good resistance to side pressure and crushing
- Enhanced resistance to fleet angle if plastic impregnated

POWERFORM[®] 6 / 6P

ΝΟΜΙΝ					MINIMUM BREAKING FORCE			
DIAM	IETER	APPRO	K. MASS	1770 GRADE	1960 GRADE	2160 GRADE		
mm	inch	kg/m	lb/ft	kN	kN	kN		
10		0.460	0.309	75.4	83.5	92.0		
11		0.557	0.374	91.0	101	111		
12		0.662	0.445	108	120	132		
	1/2	0.742	0.499	121	134	148		
13		0.777	0.522	127	141	155		
14		0.902	0.606	148	163	180		
15		1.04	0.699	170	188	207		
	⁵ / ₈	1.16	0.779	190	211	232		
16		1.18	0.793	193	214	236		
17		1.33	0.894	218	241	266		
18		1.49	1.00	244	270	298		
19	3/4	1.66	1.12	272	301	332		
20		1.84	1.24	302	334	368		
22		2.23	1.50	365	404	445		
	7/8	2.27	1.53	372	412	454		
24		2.65	1.78	434	481	530		
25		2.88	1.94	471	522	575		
	1	2.97	2.00	487	539	594		

POWERFORM[®] 8 / 8P

NOMIN	NOMINAL ROPE DIAMETER		X MASS	MINIMUM BREAKING FORCE		
DIAM	ETER	AFFRO	A. MA33	1960 GRADE	2160 GRADE	
mm	inch	kg/m	lb/ft	kN	kN	
10		0.460	0.309	87.8	94.0	
11		0.557	0.374	106	114	
12		0.662	0.445	126	135	
	1/2	0.742	0.499	142	152	
13		0.777	0.522	148	159	
14		0.902	0.606	172	184	
15		1.04	0.695	198	211	
16	⁵ / ₈	1.18	0.791	225	241	
17		1.33	0.893	254	272	
18		1.49	1.00	284	304	
19	3/4	1.66	1.12	317	339	
20		1.84	1.24	351	376	
22		2.23	1.50	425	455	
	7/ ₈	2.27	1.53	434	464	
24		2.65	1.78	506	541	
	1	2.97	1.99	567	606	

POWERFORM[®] 8 / 8P

NOMIN	NOMINAL ROPE DIAMETER		Y MASS	MINIMUM BREAKING FORCE		
DIAM	IETER		A. PIA33	1960 GRADE	2160 GRADE	
mm	inch	kg/m	lb/ft	kN	kN	
26		3.11	2.09	594	635	
28		3.61	2.42	688	737	
	1 ¹ / ₈	3.76	2.52	717	767	
30		4.14	2.78	790	846	
32	1 ¹ / ₄	4.71	3.17	899	960	
34		5.32	3.57	1013	1083	
36		5.96	4.01	1138	1218	
38	1 ¹ / ₂	6.64	4.46	1268	1357	
40		7.36	4.95	1405	1503	
42		8.11	5.45	1535	1651	
44		8.91	5.98	1700	1819	
	1 ³ / ₄	9.09	6.11	1735	1856	
46		9.73	6.54	1858	1985	
48		10.6	7.12	2023	2162	
50		11.5	7.73	2200	2349	
	2	11.9	7.98	2266	2425	
52		12.4	8.36	2374	2541	

• High MBF

• Enhanced resistance to fleet angle if plastic impregnated

• Smoother contact surface in respect to conventional hoist rope

NOTE: Rope wt. mentioned above is correspondence to the 1960 grade. For 2160 grade, Rope wt. will be approx. 5% higher.

POWERFORM® 8 MAX

NOMINAL ROPE DIAMETER		APPRO	MINIMUM BREAKING FORCE	
				2160 GRADE
mm	inch	kg/m	lb/ft	kN
10		0.490	0.329	102
11		0.593	0.398	123
12		0.706	0.474	147
		0.790	0.531	165
13		0.828	0,556	172
14		0.960	0.645	200
15		1.10	0.739	230
	⁵ / ₈	1.23	0.827	257
16		1.25	0.840	261
17		1.42	0.954	295
18		1.59	1.07	331
19	3/4	1.77	1.19	368
20		1.96	1.32	408
22		2.37	1.59	494
	7/8	2.42	1.63	504
24		2.82	1.89	588
25		3.06	2.06	638
	1	3.16	2.12	658
26		3.31	2.22	690
28		3.84	2.58	800
	1 ¹ / ₈	4.00	2.69	833
30		4.41	2.96	918
	1 ¹ / ₂	4.94	3.32	1030

Extremely high MBF

• High resistance to side pressure and crushing

POWERFORM® 18

NOMINAL ROPE			V MASS	MINIMUM BREAKING FORCE		
DIAM	DIAMETER		A. MA33	1960 GRADE	2160 GRADE	
mm	inch	kg/m	lb/ft	kN	kN	
6		0.175	0.118	29.4		
7		0.238	0.160	38.0		
8		0.310	0.208	51.8		
9		0.393	0.264	64.6		
10		0.485	0.326	80.8		
11		0.587	0.394	101	111	
12		0.698	0.469	116	127	
	1/2	0.782	0.525	135	148	
13		0.820	0.551	141	155	
14		0.951	0.639	160	177	
15		1.09	0.732	182	201	
16	⁵ / ₈	1.24	0.833	209	232	
17		1.40	0.941	237	262	
18		1.57	1.05	266	295	
	3/4	1.75	1.18	291	322	
20		1.94	1.30	320	359	
22		2.35	1.58	379	424	
24		2.79	1.87	462	523	
	1	3.13	2.10	517	585	
26		3.28	2.20	542	613	
28		3.80	2.55	632	710	
30		4.37	2.94	721	809	
32	1 ¹ / ₄	4.97	3.34	820	920	

Good rotational stability

• Good resistance to side pressure and crushing

POWERFORM[®] 35 / 35P

NOMINAL ROPE				MINIMUM BREAKING FORCE		
DIAM	ETER	AFFRO	A. MA33	1960 GRADE	2160 GRADE	
mm	inch	kg/m	lb/ft	kN	kN	
24		2.88	1.94	536	576	
25		3.13	2.10	581	625	
	1	3.23	2.17	600	645	
26		3.38	2.27	629	676	
28		3.92	2.63	729	788	
	1 ¹ / ₈	4.08	2.74	759	817	
30		4.50	3.02	837	904	
	1 ¹ / ₄	5.04	3.39	937	1010	
32		5.12	3.44	952	1040	
34		5.78	3.88	1080	1160	
35	1 ³ / ₈	6.10	4.10	1130	1220	
36		6.48	4.35	1210	1300	
38	1 ¹ / ₂	7.22	4.85	1340	1440	
40		8.00	5.38	1490	1600	
42		8.82	5.93	1643		
44		9.68	6.50	1803		
	1 ³ / ₄	9.90	6.65	1840		
46		10.6	7.11	1971		
48		11.5	7.74	2146		
50		12.5	8.40	2328		
	2	12.9	8.67	2403		
52		13.5	9.09	2518		
60		18.0	12.1	3353		
64		20.5	13.8	3814		
66		21.8	14.6	4057		

• Extremely high MBF

• Excellent non-rotational properties

• High fatigue life and increased abrasion

• Enhanced resistance to fleet angle if plastic impregnated

POWERFORM[®] 35 / 35P

NOMINAL ROPE		APPRO	X MASS	MINIMUM BREAKING FORCE		
DIAM	1ETER			1960 GRADE	2160 GRADE	
mm	inch	kg/m	lb/ft	kN	kN	
10		0.490	0.329	91.0	100	
11		0.593	0.398	111	121	
12		0.706	0.474	131	144	
	1/2	0.790	0.531	148	161	
13		0.828	0.556	155 169		
14		0.960	0.645	180 196		
15		1.10	0.739	207 225		
	⁵ / ₈	1.23	0.827	234 252		
16		1.25	0.840	238	256	
17		1.42	0.954	269 289		
18		1.59	1.07	301 324		
19	3/4	1.81	1.22	336 361		
20		2.00	1.34	372 400		
22		2.42	1.63	450 484		
	7/8	2.47	1.66	459	494	

STORAGE & PRE-INSTALLATION PROCEDURE

Crane ropes, like any machine or spares, deteriorate during storage as well as in service. Therefore, the assurance of safety and economy in use of the equipment, dictates the requirement for a procedure of proper storage, handling and installation of crane ropes.

STORAGE

- Store rope in a clean, dry, well ventilated, dust free undercover location.
- Cover the rope with water proof material and/or canopy, if not stored inside.
- Storage should be free from steam, chemical fumes or any other corrosive agent.
- Avoid direct contact of rope with floor.
- Place reels, preferably over a frame or cradle and allow flow of air under the reel.

BEFORE INSTALLATION

- Before re-equipping the appliance, all grooves in drums and pulleys should be checked to ensure that they will correctly accept the replacement rope.
- Sheave groove diameter should be larger than the nominal rope diameter by about 5% to 10% and ideally at least 2.5% greater than the actual diameter of the new rope.
- The diameter of the new rope shall be measured with the rope under no tension and the value recorded. Maintain fleet angle at minimum during installation
- · Prior to rope cutting, always follow proper procedure of rope seizing

RUNNING IN PROCEDURE

- Run the newly installed wire rope in and out six times over its maximum working length with a load approx. 25% of safe working load at reduce speed.
- Repeat this procedure with load at 50% of safe working load.
- Continue the same procedure with load at 100% of safe working load.

SEIZING PROCEDURE

The purpose of seizing a rotation resistant wire rope is to prevent relative movement of individual strands of inner core as well as outer layer and thereby preserving its designed integrity and rotational balance. Therefore, before cutting any rotation resistant wire rope, tightly double seize with soft steel wire of suitable size, on either side of the intended cut. The length of each seizing should be at least equal to 2 x d_{rope dia}. and each of the seizing should be spaced approximately 6 x d_{rope dia}.

- Use of adhesive tape in lieu of seizing is strictly discouraged.
- · Fusing of cut ends in strongly recommended.

POWERFORM® 18/HYFLEX 18 | POWERFORM® 35/HYFLEX 35

For 6.0 mm to 24.0 mm wire rope, use 1.0 mm wire For 25.0 mm to 36.0 mm wire rope, use 1.6 mm wire For 37.0 mm to 56.0 mm wire rope, use 2.0 mm wire Double seizing and end fusing mandatory

- Avoid rope exposure to elevated temperatures.
- Avoid handling damages to wire ropes.
- Ensure that tag/marking is intact and follow 'first in, first out' principle.
- Inspect rope periodically and apply suitable rope dressing compatible with manufactured lubricant, whenever necessary.
- Rotate reel periodically, say after every 3 months, particularly in warm environment.
- Never pull the rope from stationery coil or reel
- Avoid contact with ground while unwinding the rope
- Keep the reel on a suitable stand with braking arrangement
- · Avoid formation of kink/ bends in the rope during handling
- Follow 'top to top' or 'bottom to bottom' practice for rope transfer from reel to drum / winch.

HANDLING & INSTALLATION

6/8 STRANDED ROPE

- Never pull out rope from stationary coil.
- Place rope reel on ground and roll out straight.
- If heavy, place coil on turntable and pull the end away from coil.
- Prevent contamination with dust, grit, moisture, chemicals and other harmful material.
- Put a shaft of adequate strength through reel bore and place in a suitable stand.
- Allow reel to rotate freely and be braked to avoid overrun.
- Provide back tension for multilayer spooling and ensure to wind tightly, particularly the bottom layer.
- Maintain constant tension while reeving and avoid layer crossover.
- Avoid formation of loops or kinks.
- Avoid reverse bending during reeving. Wind/Unwind 'top to top' or 'bottom to bottom'.
- Take special care while releasing the outboard end of rope from supplied reel or coil.
- Maintain fleet angle at minimum during installation.
- Check that the grooves of all sheaves are as recommended and sheaves are free to rotate.
- Check the diameter and pitch of drum grooves, and ensure that these are as recommended.
- 'Run' the new rope by running the equipment slowly, with a low load for a number of cycles.
- Inspect that the rope spools correctly on the drum and no slackness or cross-over occurs

NOTE:

The user should always refer relevant standard/regulations like EN-12385, ISO 4309 for wire rope care, maintenance & installation.

HANDLING & INSTALLATION

HANDLING OF MULTI-STRAND ROTATION RESISTANT ROPES:

Since rotation resistance wire ropes have special layering and arrangements of strands that are very sensitive, therefore they require careful handling and installation in order to avoid deterioration, hoisting problems and pre-mature removal of wire ropes. The recommendations are given below to be followed in addition to the general mentioned method.

- The rope should be paid off in the correct manner to ensure that the turn is neither put in nor taken out.
- A small rope of short length, say up to 100 mtr, may be unrolled along the ground but should always be kept under control. Never pull a rope from a stationary coil.
- Ropes in larger sizes or longer lengths should always be procured on reels, and transferring these to coils should be avoided.
- A long length of rope on a reel has a high moment of inertia. Proper braking arrangements must be made to prevent overrun, which may lead to loop formation. A simple braking mechanism consists of a wooden plank acting against the reel flange.
- If, for any reason a loop does form, ensure that this does not tighten to cause a kink, which may lead to distortion of the rope, requiring its immediate discard.

- The rope should be smoothly paid out in a straight line from the reel, mounted on a stand and supported by a shaft. If the space available does not permit the same, the reel and stand must be placed to limit the fleet angle of installation to 1° 30, i.e., for 1 mtr width between flanges to 40 mtr of horizontal distance. If space allows for a longer run, then it can be used with advantage.
- Care should be taken to avoid the reel being placed in such a position that will set up a reverse bend during reeving, i.e., for an under-winding drum, the rope should be taken off the bottom of the reel.
- Multi-strand ropes are generally supplied with fixed ends, unless otherwise specified. If, for any reason, it is necessary to cut a rope at the site, at least three tight servings of soft seizing wire should be applied on either side before cutting.

DISCARD CRITERIA

Crane ropes must be removed from service if the examination reveals that the rope deterioration has exceeded limits of certain criteria. A general retirement plan states that one of the factors listed below, severe enough, can cause rope discard. However, rope deterioration and decision to discard, almost always, is the result of cumulative effect of combination of these factors.

Broken Wires | Diameter Reduction | Corrosion | Deformation

NUMBER & CHARACTERISTICS OF BROKEN WIRES

Crane rope must be considered for discard if number of visible broken wires equals or exceeds the allowable limit. For 6 and 8 strand wire ropes, occurrence of wire breakages, to a large extent is on the outer surface, whereas for rotation-resistant wire ropes, majority of wire breakages are expected to occur internally and require specialized examination techniques to reveal.

The table below specifies the number of visible broken wires, which when equalled or exceeded requires mandatory discard of ropes working on steel sheaves.

VALLEY WIRE BREAKAGE

- Wire breaks in the strand valley, generally, indicate internal rope deterioration and require closer inspection of the rope equal to 6 x d.
- Broken wires at, or adjacent to the termination, require the termination to be remade by shortening the rope, otherwise the rope should be discarded.
- Concentrated close group of broken wires in a rope length of 6 x d or in any one strand, requires discard of the rope even if the number given above are not reached.
- Complete fracture of one strand or collapse of core requires immediate discard of the wire rope.

	CONSTRUCTION	SECTIO	ON OF ROPE WORKIN OR SPOOLING ON A	IG IN STEEL SHEAVE SINGLE LAYER DRUM	S AND /	SECTION OF ROPE SPOOLING ON A MULTI-LAYER DRUM			
PRODUCT		N	O. OF VISIBLE BROKI LENGTH	EN WIRES IN WIRE RO I EQUALS	DPE	NO. OF VISIBLE BROKEN WIRES IN WIRE ROPE LENGTH			
		(ORDIN	ARY LAY)	(LANG	S LAY)	(ORDIN	ARY LAY)	(LANC	S LAY)
		6 x d	30 x d	6 x d	30 x d	6 x d	30 x d	6 x d	30 x d
HYFLEX 4	4X39	2	4	2	4	4	8	4	8
	6X25F	5	10	2	5	10	20	10	20
	6X29F	6	11	3	6	12	22	12	22
HYFLEX 6/	6X26WS	6	13	3	6	12	26	12	26
POWERFORM® 6	6X31WS	8	16	4	8	16	32	16	32
	6X36WS	9	18	4	9	18	36	18	36
	6X41WS	10	21	5	10	20	42	20	42
	8X25F	6	13	3	6	12	26	12	26
	8X26WS	9	18	4	9	18	36	18	36
HYFLEX 8/ POWERFORM® 8	8X31WS	10	21	5	10	20	42	20	42
	8X36WS	12	24	6	12	24	48	24	48
	8X41WS	13	26	6	13	26	52	26	52
	18X7	2	4	2	4	4	8	4	8
HYFLEX 18/ POWERFORM® 18	18X19S	4	8	4	8	8	16	8	16
	18X26WS	6	12	6	12	12	24	12	24
	35X7	3	5	3	5	5	10	5	10
HYFLEX 35/ POWERFORM® 35	35X19S	6	12	6	12	12	24	12	24
	35X26WS	6	12	6	12	12	24	12	24

RECOMMENDED DO'S & DON'TS

DO'S

- Lubricate ropes with good quality acid free and moisture free lubricant
- Regularly inspect the sheaves, rollers or pulleys the life of a rope largely depends on their conditions
- Inspect ropes and fittings/terminations periodically

DON'TS

- Do not allow ropes in store to deteriorate
- ${\scriptstyle \bullet}$ Do not mishandle ropes when uncoiling or unreeling & allow kinks to form
- Do not use langs lay with swivel for 6/8 standard rope
- Do not use a rope with too large groove diameter on drums and pulleys
- Do not cut a rope without seizing
- Do not load the rope beyond its safe working load. Reduction of safety factor may jeopardise not only rope, but also equipment, job and men

METRIC - IMPERIAL DIAMETER CONVERSION											
inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm
⁵ / ₃₂	3.97	¹ / ₂	12.7	¹⁵ / ₁₆	23.8	1 ¹ / ₂	38.1	2 ¹ / ₂	63.5	4 ¹ / ₄	108.0
³ / ₁₆	4.76	⁹ / ₁₆	14.3	1	25.4	1 ⁵ / ₁₆	41.3	2 ³ / ₄	69.9	4 ¹ / ₂	114.3
⁷ / ₃₂	5.56	⁵ / ₈	15.9	1 ¹ / ₁₆	27.0	1 ³ / ₄	44.5	3	76.2	4 ³ / ₄	120.7
1/4	6.35	¹¹ / ₁₆	17.5	1 ¹ / ₈	28.6	1 ⁷ / ₈	47.6	3 ¹ / ₄	82.6	5	127.0
⁵ / ₁₆	7.94	3/4	19.0	1 ³ / ₁₆	30.2	2	50.8	3 ¹ / ₂	88.9		
³ / ₈	9.53	¹³ / ₁₆	20.6	1 ¹ / ₄	31.8	2 ¹ / ₈	54.0	3 ³ / ₄	95.3		
7/ ₁₆	11.1	⁷ / ₈	22.2	1 ³ / ₈	34.9	2 ¹ / ₄	57.2	4	101.6		

		CONVERSION TABLE		
Length	1m	= 1000mm	= 3.281ft	= 39.37 inch
Force	1kN	= 101.97kp	= 0.10197 t metric-f	= 224lbs-f
Tensile Strength	1N/mm²	= 0.10197 kp/mm ²	= 145.04 p.s.i.	= 10 bar
Cross Section	1 mm²	= 0.00155 sq.inch		
Weight	1 metric t	= 1000kg = 1.102 short t	= 0.9842 long t	= 2204.6 lbs
Weight per Length Unit	1 kg/m	= 0.672 lbs/ft		

MAGNUM LIFTERS AND TACKLES

SHOP NO.5, BADRI BAUG BUILDING,71-73, SAYED MUKRI STREET,KATHA BAZAR, MASJID WEST, MUMBAI-400009 Phone: +91 99872 33400/99872 33522 Email: sales@magnumlt.net/salesmagnumlt@gmail.com

www.magnumlt.net